Search results for "Reductive group"
showing 5 items of 5 documents
Invariant deformation theory of affine schemes with reductive group action
2015
We develop an invariant deformation theory, in a form accessible to practice, for affine schemes $W$ equipped with an action of a reductive algebraic group $G$. Given the defining equations of a $G$-invariant subscheme $X \subset W$, we device an algorithm to compute the universal deformation of $X$ in terms of generators and relations up to a given order. In many situations, our algorithm even computes an algebraization of the universal deformation. As an application, we determine new families of examples of the invariant Hilbert scheme of Alexeev and Brion, where $G$ is a classical group acting on a classical representation, and describe their singularities.
Invariants of unipotent groups
1987
I’ll give a survey on the known results on finite generation of invariants for nonreductive groups, and some conjectures. You know that Hilbert’s 14th problem is solved for the invariants of reductive groups; see [12] for a survey. So the general case reduces to the case of unipotent groups. But in this case there are only a few results, some negative and some positive. I assume that k is an infinite field, say the complex numbers, but in most instances an arbitrary ring would do it.
homogeneous embeddings of SL2(C) modulo a finite sub-group.
2000
L'objet de ce travail est l'étude des variétés algébriques normales complexes munies d'une action algébrique de $SL_{2}$ et qui contiennent $SL_{2}/H$ comme orbite ouverte, $H$ étant un sous-groupe fini de $SL_{2}$.Plus précisément on définit un plongement homogène de $SL_{2}/H$ comme la donnée d'une $SL_{2}$-variété irréductible $X$ (quasi-projective ou non) contenant $SL_{2}/H$ comme orbite ouverte et d'un morphisme $SL_{2}$-équivariant de $SL_{2}$ dans $X$.Les plongements homogènes lisses ainsi que les plongements minimaux (plongements lisses et complets qui ne sont pas des éclatements d'un autre plongement lisse complet) de $SL_{2}/\{Id\}$ et de $SL_{2}/\{\pm Id\}$ ont été déterminés pa…
Algebraic singularities have maximal reductive automorphism groups
1989
LetX = On/ibe an analytic singularity where ṫ is an ideal of theC-algebraOnof germs of analytic functions on (Cn, 0). Letdenote the maximal ideal ofXandA= AutXits group of automorphisms. An abstract subgroupequipped with the structure of an algebraic group is calledalgebraic subgroupofAif the natural representations ofGon all “higher cotangent spaces”are rational. Letπbe the representation ofAon the first cotangent spaceandA1=π(A).
Automorphisms of hyperelliptic GAG-codes
2009
Abstract We determine the n –automorphism group of generalized algebraic-geometry codes associated with rational, elliptic and hyperelliptic function fields. Such group is, up to isomorphism, a subgroup of the automorphism group of the underlying function field.